Computing integral points on Xns+(p)
نویسندگان
چکیده
منابع مشابه
Computing Integral Points on Elliptic Curves
By a famous theorem of Siegel [S], the number of integral points on an elliptic curve E over an algebraic number field K is finite. A conjecture of Lang and Demjanenko [L3] states that, for a quasiminimal model of E over K, this number is bounded by a constant depending only on the rank of E over K and on K (see also [HSi], [Zi4]). This conjecture was proved by Silverman [Si1] for elliptic curv...
متن کاملComputing S-Integral Points on Elliptic Curves
1. Introduction. By a famous theorem of Siegel [S], the number of integral points on an elliptic curve E over an algebraic number field K is finite. A conjecture of Lang and Demyanenko (see [L3], p. 140) states that, for a quasiminimal model of E over K, this number is bounded by a constant depending only on the rank of E over K and on K (see also [HSi], [Zi4]). This conjecture was proved by Si...
متن کاملComputing Integral Points in Convex Semi-algebraic Sets
Let Y be a convex set in IR k deened by polynomial inequalities and equations of degree at most d 2 with integer coeecients of binary length l. We show that if Y \ ZZ k 6 = ;, then Y contains an integral point of binary length ld O(k 4). For xed k, our bound implies a polynomial-time algorithm for computing an integral point y 2 Y. In particular, we extend Lenstra's theorem on the polynomial-ti...
متن کاملIntegral Points on Generic Fibers
Let P (x, y) be a rational polynomial. If the curve (P (x, y) = k), k ∈ Q, is irreducible and admits an infinite number of points whose coordinates are integers, Siegel’s theorem implies that the curve is rational. We deal with the case where k is a generic value and prove, in the spirit of the Abhyankar-MohSuzuki theorem, that there exists an algebraic automorphism sending P (x, y) to the poly...
متن کاملIntegral Points on Hyperelliptic Curves
Let C : Y 2 = anX + · · · + a0 be a hyperelliptic curve with the ai rational integers, n ≥ 5, and the polynomial on the right irreducible. Let J be its Jacobian. We give a completely explicit upper bound for the integral points on the model C, provided we know at least one rational point on C and a Mordell–Weil basis for J(Q). We also explain a powerful refinement of the Mordell–Weil sieve whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2021
ISSN: 1944-7833,1937-0652
DOI: 10.2140/ant.2021.15.569